
REVIEW International Motoneuron Society

Impact of traumatic brain injury on amyotrophic lateral sclerosis: from
bedside to bench

Colin K. Franz,1,2,3* Divya Joshi,1 Elizabeth L. Daley,3 Rogan A. Grant,3 Kyriakos Dalamagkas,4

Audrey Leung,1,2 John D. Finan,5 and Evangelos Kiskinis3,6*
1Biologics Laboratory, Shirley Ryan AbilityLab, Chicago, Illinois; 2Department of Physical Medicine and Rehabilitation,
Northwestern University Feinberg School of Medicine, Chicago, Illinois; 3The Ken & Ruth Davee Department of Neurology,
Northwestern University Feinberg School of Medicine, Chicago, Illinois; 4Department of Physical Medicine and
Rehabilitation, McGovern Medical School, TIRR Memorial Hermann, Houston, Texas; 5Department of Neurosurgery,
NorthShore University HealthSystem, Evanston, Illinois; and 6Department of Physiology, Northwestern University Feinberg
School of Medicine, Chicago, Illinois

Submitted 27 August 2018; accepted in final form 14 May 2019

Franz CK, Joshi D, Daley EL, Grant RA, Dalamagkas K, Leung A, Finan
JD, Kiskinis E. Impact of traumatic brain injury on amyotrophic lateral sclerosis:
from bedside to bench. J Neurophysiol 122: 1174–1185, 2019. First published May
22, 2019; doi:10.1152/jn.00572.2018.—Amyotrophic lateral sclerosis (ALS) is a
neurodegenerative disease characterized by the loss of upper and lower motor
neurons, which manifests clinically as progressive weakness. Although several
epidemiological studies have found an association between traumatic brain injury
(TBI) and ALS, there is not a consensus on whether TBI is an ALS risk factor. It
may be that it can cause ALS in a subset of susceptible patients, based on a history
of repetitive mild TBI and genetic predisposition. This cannot be determined based
on clinical observational studies alone. Better preclinical models are necessary to
evaluate the effects of TBI on ALS onset and progression. To date, only a small
number of preclinical studies have been performed, mainly in the superoxide
dismutase 1 transgenic rodents, which, taken together, have mixed results and
notable methodological limitations. The more recent incorporation of additional
animal models such as Drosophila flies, as well as patient-induced pluripotent stem
cell-derived neurons, should facilitate a better understanding of a potential func-
tional interaction between TBI and ALS.
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INTRODUCTION

Patients with amyotrophic lateral sclerosis (ALS) may have
a variety of initial presenting symptoms, but the vast majority
will suffer a progressive deterioration that includes skeletal
muscle weakness and atrophy, difficulties in swallowing and
movement, and eventual death, usually resulting from neuro-
muscular respiratory failure (Kiernan et al. 2011). The progres-
sion of disease is attributable to the loss upper and lower motor
neurons (MNs). Current treatments only have a small effect on
progression, and, once diagnosed, patients typically live for
another 2–5 yr. Therapeutic development has been stymied by

the fact that a unifying mechanism of disease has eluded ALS
researchers and clinicians. Approximately 10–15% of patients
suffer from heritable, familial forms with functionally diverse
genetic etiologies including RNA metabolism, protein degra-
dation, trafficking, and cytoskeletal homeostasis (Corcia et al.
2017; Ling et al. 2013). The majority of ALS cases are
characterized as sporadic in nature, with recent evidence sug-
gesting that a proportion of these can be explained by de novo
mutations in known ALS-causing genes (Renton et al. 2014).
Additionally, ALS may be oligogenic in nature (resulting from
variants in �1 gene), and mutations in ALS-causing genes may
exhibit pleiotropic effects, thereby confounding diagnosis.
This, coupled with the limited penetrance of some known
mutations, has led to a gradual departure from the classical
familial/sporadic divisions, in favor of a multihit model that
may require more than one genetic or environmental insult to
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elicit ALS disease symptoms (Hardiman et al. 2017; Ling et al.
2013; Renton et al. 2014).

The epidemiological factors that might increase susceptibil-
ity to ALS are poorly understood. Mild traumatic brain injury
(TBI) has been proposed to be a risk factor (McKee et al.
2010); however, this association remains disputed (Armon and
Nelson 2012). The purpose of this review is to summarize what
is known about the relationship between TBI and ALS from a
clinicopathological perspective, as well as to explore the les-
sons we can learn from preclinical models that may eventually
clarify whether a functional interaction truly exists. In recent
years, there has been great attention paid to mild TBI, which is
the most frequent type of TBI and still often referred to as a
concussion (Dixon 2017). The precise definition of mild TBI
remains a subject of debate among neuroscientists and clini-
cians, so to simplify the nomenclature we will refer to most
forms of head trauma as “TBI” and whenever possible make
note of the different severities from mild to severe. In specific
cases with neuropathology-based diagnosis of chronic trau-
matic encephalopathy (CTE), a progressive neurodegenerative
disorder linked to repetitive head impacts, this term may be
used instead of TBI.

EPIDEMIOLOGY AND CLINICAL CORRELATIONS

Anecdotal accounts relating TBI to the development of ALS
are prevalent in clinical practice, with some of the earliest case
series reported more than a century ago (Woods 1911). Since
then, the association between head trauma and ALS has been a
focus of many small to medium-size epidemiological studies.
Early reports of a probable link between war veterans and ALS
led to the assessment of ALS disease incidence within 690,000
young veterans of the 1991 Gulf War (Haley 2003). This study
was well controlled and ultimately concluded that a war-related
environmental trigger increased the incidence of ALS by as
much as threefold relative to the expected frequency of cases.
While the specific environmental trigger (i.e., injury, exposure
to chemicals, etc.) was not identified, a follow-up study
showed that the spike in ALS cases within veterans was
restricted to the decade following the Gulf War (Horner et al.
2008). Another study in military veterans examined ones that
had suffered a TBI of unspecified severity (n � 241 cases
versus n � 597 controls) and found a greater than a twofold
higher incidence of ALS in cases, further reinforcing a poten-
tial correlation between injury and ALS (Schmidt et al. 2010).
Intriguingly, this risk was strongest in carriers of the apolipo-
protein E type 4 allele (i.e., APOE-4) (Schmidt et al. 2010),
which by itself has been shown to not be a risk factor for
sporadic ALS or to affect disease onset and progression (Mui
et al. 1995; Siddique et al. 1998). Several single nucleotide
polymorphisms, including APOE-4, have been associated with
clinical outcomes after TBI (Weaver et al. 2012). Recently,
whole exome sequencing has been used to identify genetic
mutations that appear to confer increased risk for developing
ALS (Cirulli et al. 2015), and even genetic mutations known to
be causal for ALS seem to have incomplete penetrance for
unclear reasons (Al-Chalabi and Lewis 2011). This raises the
possibility that an epidemiological factor, such as mild TBI,
might play a role in onset of disease for at least some patients
with ALS.

A 2007 study comparing 109 documented cases of head
injury in New England soccer players against 55 age-, sex-, and

socioeconomic status-matched controls found no correlation
between a single injury and rates of ALS, but a threefold
increase in ALS risk was observed for subjects with a history
of repeated injuries (Chen et al. 2007). More recently, the
European ALS consortium reviewed the cases of 575 ALS
patients and 1,150 healthy controls and again noted that a
history of two � TBI events was associated with an almost
threefold increased risk of ALS, and perhaps even greater risk
when the injury occurred between the ages 35 and 54 yr
(Pupillo et al. 2017). While TBI experienced in mid or late
adulthood may have a greater impact on risk, there are other
potential risk factors in need of consideration. For example, a
previous study reported that ALS patients were approximately
twice as likely as controls to have always been slim or to have
been varsity athletes (Scarmeas et al. 2002). However, the link
between high levels of physical activity and ALS remains
controversial (Harwood et al. 2016; Lacorte et al. 2016). It is
possible that high levels of physical activity are only harmful
in association with TBI in vulnerable individuals who carry
other risk factors for ALS such as genetic predisposition
(Fig. 1).

At the same time, there have been a number of studies that
did not find a clear association between TBI and ALS. A large
retrospective study from the United Kingdom compared the
rates of ALS in a cohort of patients who had a history of trauma
(n � 106,593) against a large reference cohort (n � 511,831)
and concluded that a remote history of TBI was not a signifi-
cant risk factor for developing ALS (Turner et al. 2010).
However, the study noted a significant association between
acute or subacute TBI and ALS, if it occurred within one year
of the ALS diagnosis. The interpretation of this result is not
straightforward, because it may reflect reverse causation, in
that traumatic injuries that occur within the year of formal
diagnosis of ALS may simply reflect the early motor impair-
ments of undiagnosed ALS, rather than trigger its onset.
Another notable study from a single ALS clinic looked at 100
patients, of whom 24 had a documented history of head injury
and 47 underwent autopsy (9 with head injury). The study
concluded that a history of TBI was not a significant contrib-
utor to ALS progression (Fournier et al. 2015). This group
went on to examine the expression patterns of pathological tau
and TAR (transactive response) DNA-binding protein 43
(TDP-43) in the 47 autopsied brains but did not identify any
substantial differences in expression of these neuropathological
hallmarks of disease (Mackenzie et al. 2007; Maekawa et al.
2009) based on TBI history. Interestingly, extensive TDP-43
and tau pathology has been shown in the brains and spinal
cords of athletes who had documented history of both repeti-
tive mild TBI and MN disease (McKee et al. 2009, 2013).

Neither the study by Turner et al. (2010) nor that by Fournier
et al. (2015) was designed to exclude repetitive mild TBI, such
as occurs most frequently in collision sports like football or
soccer (Pfister et al. 2016; Prien et al. 2018), as an ALS risk
factor. This might account for some of the discrepant results to
date. For example, a positive correlation between the duration
of professional football play and the more extensive expression
of pathological tau and TDP-43 has also been reported (McKee
et al. 2013). In a systematic retrospective chart review of 1,835
ALS and primary lateral sclerosis (PLS) patients in Germany
and Switzerland, 18 patients (14 ALS and 4 PLS) with remote
history of frontal contusions or other frontal intracranial lesions
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confirmed by brain MRI were analyzed (Rosenbohm et al.
2014). Remarkably, it was noted that focal onset of their motor
symptoms occurred contralateral to the cortical lesion site in
the majority of cases (15/18; 83.3%), suggesting spread might
be mediated through connectivity of the corticomotor tracts. If
true, this would fit with one proposed model of disease prop-
agation, via corticospinal/bulbar connectivity from upper to
lower MNs, perhaps related to a focal area of trauma (Fig. 1).
This mechanism is associated with cortical hyperexcitability
(Seeger et al. 2017) and perhaps propagation via perturbed
synaptic connectivity or transmission of misfolded proteins
such as TDP-43 through a prionlike mechanism.

The conflicting clinical results to date could be attributed
to a number of factors, including the possible underdiagno-
sis and underreporting of milder TBI, as patients are likely
to not choose to seek medical attention for transient symp-
toms. This is further compounded by the inconsistent his-
tory-taking practices between different physicians when it
comes to the incidence of TBI, during evaluation in ALS
specialty clinics. There is also the very wide range of normal
for ALS disease onset and progression, which adds substan-
tial variability between individual patients. As with many
studies relying on clinical observation and epidemiology
data, it is therefore difficult to definitively prove causation.
In general, the studies performed to date were often small or
moderate in sample size and were at risk for both recall bias
and high rates of type II statistical error (i.e., “false nega-
tive”). Therefore, an increased emphasis on preclinical mod-
els should facilitate a better understanding of the potential
interaction between TBI and ALS.

HISTOPATHOLOGY IN TBI AND ALS

The clinical histopathology of ALS and TBI are largely
distinct. CTE is associated with repeated mild TBI and char-
acterized by an extensive tauopathy, particularly in the outer
layers of the cortex. Inclusions of amyloid beta are also
observed in a large subset of patients, postmortem (Johnson et
al. 2012; McKee et al. 2009). Conversely, tauopathy is rarely
observed in ALS, and is largely associated with the related
disorders frontotemporal dementia (FTD) (Ling et al. 2013) or
ALS with severe cognitive impairment (Strong et al. 2006;
Yang et al. 2003). The majority of ALS cases are characterized
by typically cytosolic inclusions containing TDP-43, p62, and
FUS, with the exception of specific ALS subtypes such as
familial ALS with superoxide dismutase 1 (SOD1) mutations,
which appear to have unique features (Shibata et al. 1996).
Ubiquitin-positive inclusions appear to be a universal feature
of all sporadic and familial ALS (Deng et al. 2010; Nakano et
al. 2004). However, ubiquitin reactivity does not appear to be
a feature in the few published cases of CTE with ALS overlap
(McKee et al. 2010).

TDP-43 inclusions have also been observed in CTE with
ALS (McKee et al. 2010, 2013), while a single TBI is sufficient
to increase TDP-43 immunoreactivity, postmortem (Johnson et
al. 2011). Aside from rare ALS cases caused by mutations in
the TDP-43 gene itself (Sreedharan et al. 2008), the mecha-
nisms responsible for the cytosolic accumulation of TDP-43 in
sporadic ALS or CTE remain poorly understood. The repeat
expansion in C9orf72, which is the largest genetic contributor
to ALS as well as FTD (DeJesus-Hernandez et al. 2011;
Renton et al. 2011), has been associated with disruptions in

Fig. 1. The corticomotor pathway may be vulnerable
to degeneration after traumatic brain injury (TBI),
especially in people with high activity levels. A:
amyotrophic lateral sclerosis (ALS) is a disease
characterized by degeneration of both upper and
lower motor neurons (MNs). Upper MNs reside in
the motor cortex of the brain and have direct con-
nections to lower MNs in the brainstem (not shown)
and spinal cord. Lower MNs receive synaptic inputs
from upper MNs as well as project their axons to
muscle. Given the well-described focal clinical on-
set of ALS that often affects a single body region
before spreading to anatomically contiguous regions
with either type of MN within the neuroaxis, this
clinical pattern is compatible with the concept that
focal stress/damage after TBI may trigger neurode-
generative diseases like ALS. While the majority of
people who suffer a TBI will not develop ALS, both
the risk of TBI and ALS have been linked to
participation in high intensity physical activities
such as a collision sport (soccer, football) or military
combat. These clinical associations support a mul-
tihit model in which occupational exposure to TBI
and high-intensity activities, combined with patient-
specific factors such as genetic predisposition, may
determine whether MN health can be maintained (B)
or whether ALS befalls an individual (C).
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nucleocytoplasmic trafficking, which may contribute to cyto-
solic accumulation of TDP-43 (Freibaum et al. 2015; Jovičić et
al. 2015; Zhang et al. 2015). Whether nucleocytoplasmic
disruption also plays a role in TDP-43 accumulation after TBI
remain to be seen. Overall, while the histopathology features of
TBI and ALS are distinct, the common neuropathological
feature of cytoplasmic TDP-43 aggregation suggests a poten-
tial mechanistic link that needs to be explored further. At the
same time, although autopsy cases from subjects with clinical
diagnoses of ALS and CTE show coexisting pathologic find-
ings consistent both with ALS and CTE, these studies have no
ability to examine cause and effect or the role of head injuries
in an unselected ALS population.

TBI IN ALS ANIMAL MODELS

Few studies to date have attempted to address the influence
of TBI on disease progression in ALS animal models. Trans-
genic mice and rats that overexpress mutant, human SOD1
protein demonstrate phenotypes that reproduce progressive
MN disease, with features reminiscent of ALS in human
patients, including selective vulnerability of MNs, impaired
motor function, and death from neuromuscular respiratory
failure (Turner and Talbot 2008). Consequently, mutant SOD1
transgenic rodents remain the most well studied ALS model
and are a standard bearer for animal modeling of neurodegen-
erative disease in general (Van Damme et al. 2017). Two
studies have examined the effect of TBI in SOD1 (G93A)
transgenic rat models. In the first study, adult, presymptomatic
rats were subjected to a focal controlled, cortical impact of
“moderate” to “severe” magnitude centered over the motor
cortex (Thomsen et al. 2015). Rats with the mutant SOD1
protein subjected to this form of TBI did not exhibit earlier
disease onset, altered locomotor function, or shortened lifes-
pan, compared with ones that underwent a sham procedure. It
should be noted that, despite histological confirmation of
extensive cortical tissue damage, there were no significant
motor deficits detected after TBI, which is in stark contrast to
motor deficits known to occur with motor cortex damage in
human TBI patients. This may be a reflection of the well-
known anatomical and functional differences between rodent
and human pyramidal systems (Lemon 2008).

A follow-up study modified the injury paradigm such that
each controlled cortical impact was reduced to mild severity
but was performed on five separate occasions (weekly) starting
in a young adult group of presymptomatic SOD1 (G93A) rats,
in an attempt to model repetitive mild TBI (Thomsen et al.
2016). The authors reported that rats subjected to repetitive
mild TBI in the mutant SOD1 genotype background demon-
strated earlier ALS symptom onset, as defined by a decline in
body weight and compared with sham control mutant rats.
Unfortunately, there are a number of key limitations to this
study as it pertains to understanding the relationship between
TBI and ALS. The group sizes were relatively small (n � 7
TBI versus n � 9 sham), there were no motor functional
measures reported, and the animals were not followed to
disease end stage. The early disease onset upon mild TBI was
not supported by any motor function assay or direct histopatho-
logical assessment. While tracking body weight has been
shown to be a good measure of disease onset in mutant SOD1
rats under standard conditions (Matsumoto et al. 2006), it is

unclear that this assumption is valid in the context of a
superimposed repetitive injury paradigm. TBI may induce
dysphagia or depression, which can directly contribute to the
early weight disturbance. Importantly, the authors also reported
that the same repetitive mild TBI paradigm led to motor
deficits in wild-type rats (Thomsen et al. 2016).

There has been one study of TBI in presymptomatic SOD1
(G93A) mice, that used a closed-head TBI paradigm (Evans et
al. 2015). The authors noted an initial decline in body mass,
much of which seemed to occur in the first 3 days after closed
TBI, but the weight then proceeded to rise for several weeks
before starting to progressively decrease in a similar fashion to
controls. After TBI, the mutant SOD1 mice, but not the
wild-type mice, showed significantly decreased grip strength
compared with sham control at 14 and 30 days. The authors
also performed electromyography to evaluate for abnormal
spontaneous activity such as fibrillation potentials or positive
sharp waves, which was present even in wild-type mice acutely
after closed TBI. Generally, this type of activity is thought to
be generated by muscle fibers that are not innervated, either
due to motoneurogenic or myopathic processes (Daube and
Rubin 2009). The presence of either MN or muscle degenera-
tion as a result of TBI is hard to account for in wild-type mice.
Therefore, the significantly greater spontaneous activity pattern
noted in mutant SOD1 mice with TBI, at 1 and 7 days
postinjury is hard to interpret. The mutant SOD1 mice also
exhibited an upregulation of inflammatory and oxidative stress
biomarkers after TBI; however, there was no change in disease
onset, as measured by motor behavioral evaluation, or overall
survival.

Recent groups have employed the Drosophila melanogaster
fruit fly to develop in vivo models of TBI. The flies are fairly
advantageous for animal studies as they have a short lifespan,
a wealth of genetic tools available, and relatively straightfor-
ward outcome measures related to neurodegeneration. In this
paradigm, adult flies are placed in a vial, affixed to a standard
compression spring. The spring is then bent to a predetermined
angle and released against a semirigid surface to produce
impact injury (Katzenberger et al. 2015). This method has
previously been shown to reduce lifespan with repeated insult
and can produce significant lesions in Drosophila brains (Kat-
zenberger et al. 2013). Strikingly, repeated injury also leads to
increased levels of phospho-tau and markers of immune acti-
vation in brain tissue, suggesting that it may recapitulate some
of the hallmarks of CTE (Barekat et al. 2016; Katzenberger et
al. 2013).

Unique among the studies is a recent publication examining
the direct interaction between TBI and multiple models of ALS
in Drosophila (Anderson et al. 2018). Using a sublethal injury
scheme, the authors found that flies overexpressing ALS gene
mutations in FUS or C9orf72 exhibited an increase in mortality
after injury, with concomitant increases in ubiquitinated pro-
tein species. Injury also unmasked persistent locomotor defects
that were not observable in control animals. Interestingly, the
authors also observed dramatic increases in TDPH-positive
stress granules upon injury, which is the Drosophila homolog
of TDP-43. While this phenomenon has been observed after
axotomy in mouse peripheral nerves (Moisse et al. 2009), it is
not yet a known hallmark of TBI. Given that stress granules
have been observed in some models of ALS (Mackenzie et al.
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2017; Taylor et al. 2016), this may suggest a common patho-
genic mechanism.

Further studies will be necessary to definitively determine
whether TBI can modulate ALS onset or progression. Inher-
ently, animal model data must be interpreted with caution, as it
is challenging to distinguish an actual alteration of ALS pro-
gression from any additive motor deficits caused by MN loss,
which are known to occur early in presymptomatic ALS
rodents (Franz et al. 2009; Frey et al. 2000; Pun et al. 2006).
This is particularly important for ALS/TBI paradigms, as mild
TBI may (Thomsen et al. 2016) or may not (Thomsen et al.
2015) cause detectable behavioral deficits in wild-type ani-
mals. Establishing a model of spinal MN degeneration in
wild-type animals after a TBI paradigm is unlikely to be of
high yield by itself, as the clinical experience has been that
even upon induction of CTE-like disease only a small subset
would go on to develop concurrent MN disease (McKee et al.
2013). Still, there remains ample opportunity to determine a
cause-and-effect relationship between TBI and ALS through
the use animal models. Larger study groups, detailed histopa-
thology and electrophysiology, and variations in the timing of
injury relative to ALS phenotypic onset should be considered.
Additionally, over the last decade or so there have been dozens
of new mouse lines described with ALS gene causing muta-
tions beyond SOD1, including some that lack major motor
deficits or even MN degeneration (De Giorgio et al. 2019).
Detailed neuromuscular studies that combine a TBI paradigm
with one of these recent mouse models that may have genetic
vulnerability, rather than a predetermined fate, for lower MN
degeneration could be highly insightful.

MODELING TBI IN VITRO

Although TBI pathology shares several mechanisms with
other neurological disorders, it begins in a unique way: with
rapid deformation of the tissue. Brain tissue is soft and incom-
pressible, i.e., it is easy to change its shape but very difficult to
change its volume (Holbourn 1943). Tension, compression,
and shear are always coupled in an incompressible material, a
phenomenon known as the Poisson effect. For example, if a
piece of tissue is compressed on a vertical plane, it stretches on
a horizontal plane and shears along a diagonal plane. If it is
stretched vertically, it compresses horizontally and again
shears along a diagonal plane. In fact, these two situations are
not on average different from the perspective of a randomly
oriented neuron inside the tissue. Neurons are long, slender
structures. Slender structures can generally accommodate any
type of loading except tension without failure because they can
curl up without damage. Therefore, while compression, ten-
sion, and shear occur simultaneously on different planes
through any point, neurons oriented along the plane of maxi-
mum tension are the most likely to fail. These are the basic
principles underlying most in vitro models of TBI.

There are several well-established in vitro models of TBI
(Morrison et al. 2011), including multiple 2D culture systems
that apply tension and 3D culture system that apply compres-
sion (Bar-Kochba et al. 2016) or shear (LaPlaca et al. 2005).
Organotypic slice cultures (Morrison et al. 2006) and 2D or 3D
cultures (Ahmed et al. 2000; Cullen et al. 2007) of dissociated
primary or immortalized cells have been employed in these
models. Typically, 2D cultures are maintained on a silicone

membrane that is stretched to create a mechanical insult. Early
in vitro TBI models induced stretch by applying air pressure to
all (Ellis et al. 1995) or part of the silicone membrane (Smith
et al. 1999). More recently, indentation with a rigid piston
driven by an electromagnetic voice coil has been used to
induce stretch (Morrison et al. 2003). Indentation systems
achieve shorter pulse durations than pneumatic systems (Ellis
et al. 1995; Morrison et al. 2006). These shorter pulses are
more biofidelic (Hardy et al. 2007), which is significant be-
cause the trauma response is rate sensitive (Ahmadzadeh et al.
2014; Elkin and Morrison 2007). Also, the indentation ap-
proach has been scaled up to a 96-well format (Sherman et al.
2016) but technical challenges make it difficult to scale the
pneumatic approach up to a multiwell format (Magou et al.
2011).

HUMAN IPSC MODELS FOR STUDYING THE RELATIONSHIP
BETWEEN TBI AND ALS

In vitro modeling has proven to be a powerful preclinical
tool in ALS. Experiments with patient-specific induced pluri-
potent stem cell (iPSC)-derived neurons have uncovered dis-
ease mechanisms (Barmada et al. 2014; Bilican et al. 2012;
Chen et al. 2014; Devlin et al. 2015; Donnelly et al. 2013;
Egawa et al. 2012; Kiskinis et al. 2014, 2018; Mitne-Neto et al.
2011; Sareen et al. 2013; Serio et al. 2013; Wainger et al. 2014;
Yang et al. 2013), and enable relatively rapid clinical innova-
tion through repurposing of clinically approved drugs (Mc-
Neish et al. 2015). Human iPSCs are easily generated after
primary cells (typically skin cells or mononuclear, blood cells),
which are harvested from a human patient, are converted by
molecular reprogramming and then differentiated into relevant
neural subtypes (Hunsberger et al. 2015). The utility of
CRISPR/Cas9 gene editing for the generation of isogenic
control iPSC lines (i.e. experiments comparing iPSC-derived
neurons with genomes that differ only by a single genetic
variant) can conclusively prove that a particular genetic variant
causes a particular functional deficit. The combination of in
vitro trauma experiments with patient-specific and isogenic
iPSC-derived neurons have the potential to address the ques-
tion of gene-trauma interactions in ALS pathology (Fig. 2).
They could also be applied to a multihit, gene-trauma interac-
tion model, i.e., the hypothesis that a given mutation is harm-
less in the absence of neurotrauma but leads to ALS in the
wake of neurotrauma. This opportunity is particularly exciting
in light of ongoing efforts to bank stem cells from up to 1,000
ALS patients (Progress & Updates: Answer ALS Research
2018).

At the same time cell culture models have limitations. They
provide simple approximations of the likely complex in vivo
disease processes, because they lack the cellular diversity and
structural organization of an intact nervous system. This is
particularly relevant in the case of TBI, which is known to
involve interconnected dysfunction in all three components of
the neurovascular unit, which consists of neurons, glia and
associated vasculature (Xing et al. 2012). CNS glia, in partic-
ular, appear to play an essential role in neuronal degeneration
and regeneration upon injury (Myer et al. 2006; Neumann et al.
2009), while other non-cell-autonomous mechanisms such as
propagation of misfolded proteins may play a key role in TBI
pathogenesis (Hawkins et al. 2013). Phosphorylated, oligo-
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meric tau protein has been shown to accumulate in the brains
of rats exposed to a fluid percussion model of TBI (Hawkins et
al. 2013), while the capacity of certain misfolded tau species to
then propagate through prion-like mechanisms can influence
the long-term functional deficits observed after TBI (Ahmed et
al. 2014; Gerson et al. 2016; Kfoury et al. 2012).

In some ways, these potential limitations can be of experi-
mental value. The use of isolated neuronal models of TBI
allows for the detection of neuron-specific, cell-autonomous
mechanisms of neurotoxicity in TBI and/or ALS. In addition,
rapid advances in organoid, 3D cell culture systems provide
increasing levels of cellular diversity and structural organiza-
tion (Arlotta and Paşca 2019; Lancaster and Knoblich 2014).
Furthermore, various insult mechanisms, such as stretch or
fluid percussion, can effectively isolate pathologies resulting
from single aspects of TBI, which otherwise entails a highly
complex array of tissue damage mechanisms.

The major hurdle that these models do face, however, is the
relative immaturity of the neurons in culture (Ho et al. 2016).
Both TBI (Sendroy-Terrill et al. 2010) and ALS (Hardiman et
al. 2017) are strongly influenced by aging. In the case of TBI,
both age at injury and time postinjury negatively predict patient
outcomes (Sendroy-Terrill et al. 2010). By nature, iPSCs
effectively revert back to an embryonic state after reprogram-
ming (Takahashi and Yamanaka 2006), largely irrespective of
donor age, despite some genetic signatures (Lo Sardo et al.
2017; Miller et al. 2013). Although methods of iPSC-derived
cell aging exist (Miller et al. 2013), it is unlikely that they
faithfully recapitulate all mechanisms of human aging. Recent

developments in direct neuronal transdifferentiation from adult
somatic cell types appear to preserve aspects of cellular age
(Abernathy et al. 2017; Huh et al. 2016; Victor et al. 2018; Yoo
et al. 2011) and may facilitate the development of more
accurate in vitro models of TBI pathogenesis.

THE COMMON PATHOPHYSIOLOGY IN TBI AND ALS

Due to the limited number of studies designed to directly
examine the link between TBI and ALS in a controlled,
laboratory setting, the pathophysiological link between these
two disease states remains largely unclear. Any proposed link
is therefore highly speculative. TDP-43 and stress-granule
dysregulation may be a potential molecular overlap between
the two disorders, but this link must be examined more directly
(Anderson et al. 2018). Recent evidence directly links stress-
granule formation to disruptions on nucleocytoplasmic trans-
port (Zhang et al. 2018), which is a hallmark of C9orf72 ALS
(Chou et al. 2018; Zhang et al. 2015), further suggesting that
this may be an important overlap between TBI and ALS.
TDP-43 has also been demonstrated to be particularly vulner-
able to protease degradation in various neurotoxic states, in-
cluding TBI, which may worsen loss-of-function effects in
affected cells (Yang et al. 2014). We therefore hypothesize that
TBI may contribute to the disruption of proteostasis seen in
ALS patients, thereby leading to insurmountable proteotoxic
stress.

TBI appears to focally induce several pathological processes
that may overlap with ALS. Most immediate among these

Fig. 2. Understanding the relationship between amyotrophic lateral sclerosis (ALS) and neurotrauma with patient-specific induced pluripotent stem cells
(iPSCs)-based neurons. Induced pluripotent stem cell-derived neurons could be used in combination with an in vitro model of neurotrauma to understand
gene-trauma interaction in ALS as follows. A: stretchable 96-well plates are fabricated by bonding a layer of flexible, transparent silicone to bottomless 96-well
plates. The inset shows tweezers gently depressing on of the well bottoms to illustrate the flexibility of the growth substrate. B: a custom-built device is used
to apply a rapid, repeatable, equibiaxial stretch to the bottom of the wells. Stretch is produced by pressing the plate rapidly down against an array of lubricated,
Teflon-coated, cylindrical indenters. The cut-away view shows an example of a stretched well alongside a well that is not stretched because the corresponding
post is not present. C: schematic of an experimental design to study gene-trauma interactions in ALS using this human in vitro model. A mutation associated
with ALS can be engineered into an iPSC line derived from a healthy control individual or alternatively can be corrected in an iPSC line derived from a patient
with a known disease-causing genetic variant. Both lines are then subjected to identical trauma in vitro, and subsequent pathology is quantified and compared with
test the hypothesis that the ALS-associated mutation amplifies the pathology of trauma.
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appears to be excitotoxic firing, due to transient ion dysregu-
lation near the site of injury (Palmer et al. 1993; Wagner et
al. 2004). Notably, dysregulation of the glial excitatory
amino acid transporter 2 (EAAT2) has been observed in
both ALS patients (Rothstein et al. 1995) and rodent models
of ALS (Howland et al. 2002), and this loss appears to be
specific to regions typically lost in ALS. Homeostatic reg-
ulation of the GluA2 subunit of AMPA receptors on MNs is
also lost in mutant SOD1 models of ALS, leading to an
increased vulnerability to excitotoxicity (Taylor et al. 2016;
Van Damme et al. 2007). Spinal MNs may therefore be
particularly vulnerable to excitotoxic damage in ALS, and
TBI-induced excitotoxic signaling may ultimately tip the
scales in favor of cell death.

Oxidative stress also appears to be a common pathological
signature between ALS and TBI (Ansari et al. 2008; Evans et
al. 2015; Readnower et al. 2010; Turner and Talbot 2008).
How this may preferentially lead to MN damage remains
unclear, but the combined toxicity in both disease states may
hasten cytotoxicity (Barber and Shaw 2010). Similarly, sus-
tained, diffuse neuroinflammation has been well documented
in both TBI (Acosta et al. 2013; Johnson et al. 2013) and ALS
(Hall et al. 1998; Keizman et al. 2009). While this may initially
be a protective response to neurotoxic damage, sustained
inflammation may lead to reactive gliosis and further contrib-
ute to neuronal damage through pathological alterations to the
extracellular milieu. Necroptosis, or programmed necrotic cell
death with autophagic induction (Degterev et al. 2005; Van-
denabeele et al. 2010), has recently been identified as a major
mechanism of cell death in both ALS (Ito et al. 2016; Re et al.
2014) and TBI (Liu et al. 2016; Wang et al. 2012; You et al.
2008). Because necroptosis is activated, in part, by cell non-
autonomous mechanisms such as inflammation (Vandenabeele
et al. 2010), it is possible that TBI may increase necroptotic
signaling above threshold for MNs to remain viable in some
individuals (Fig. 1).

Another potential pathological overlap between the two
disease states is cytoskeletal damage and dysregulation. Mu-
tations in genes associated with cytoskeletal homeostasis, in-
cluding profilin-1 (PFN1) (Wu et al. 2012) and tubulin al-
pha-4A (TUBA4A) (Smith et al. 2014), have been shown to
cause ALS. Other cytoskeletal gene mutations such as neuro-
filament heavy chain (Al-Chalabi et al. 1999) and dynactin
(Münch et al. 2004) have been associated with increased
susceptibility to ALS. Moreover, markers of cytoskeletal dam-
age have been observed in the cerebrospinal fluid (CSF) of
sporadic ALS patients (Brettschneider et al. 2006), while
aggregation of neurofilament and reduced expression of neu-
rofilament, light-chain have also been described in iPSC-based
models of SOD1-related ALS (Chen et al. 2014). The accumu-
lation of neurofilament polypeptides (both light and heavy),
has also been observed in the blood and CSF of patients with
TBI (Zetterberg et al. 2013). Diffuse axonal injury in TBI has
been shown to induce localized cytoskeletal damage (Kilinc et
al. 2008), which in turn can induce neurofilament compaction
and mislocalization (Povlishock and Pettus 1996). Thus, dys-
regulation of cytoskeletal homeostasis in ALS patients may
render them less able to overcome cytoskeletal damage after
mild TBI, leading to worsened clinical outcomes.

CONCLUSIONS

There is growing evidence that TBI, particularly of a repet-
itive nature with mild severity (McKee et al. 2013; Pupillo et
al. 2017), might be a risk factor for developing ALS. If true,
this would be of special significance to those individuals who
engage in high-risk activities such as collision sports. The facts
that mutations in TDP-43 can cause ALS and that both spo-
radic ALS and CTE cases are frequently characterized by
TDP-43 proteinopathy (Mackenzie et al. 2007; McKee et al.
2013) imply a potentially shared mechanism of neurodegen-
eration.

Animal models have been extremely useful for modeling
ALS disease mechanisms and addressing the potential interac-
tion with TBI but may have critical limitations ranging from
their inability to capture the genetic complexity of human
patients to fundamentally different corticomotor function and
connectivity. Patient-specific iPSC technologies have been
rapidly improving over the last decade and have become
another component of our preclinical tool set for understanding
neurodegenerative disease (Ichida and Kiskinis 2015). At the
same time, the development of instrumentation that allows for
controlled delivery of biofidelic trauma to human neurons in
culture (Sherman et al. 2016) enables an additional platform
that can be used to address the conflicting clinical observations
and animal studies on the effects of TBI on ALS incidence and
progression. There is no doubt that these human preclinical
model systems will help us understand aspects of ALS that
may be unique to patients or patient subgroups, but they will
not ever fully reproduce the in vivo context of the human CNS.
Therefore, corroboration of key findings between multiple
preclinical models (e.g., human and rodent, in vitro and in
vivo, etc.), along with careful clinical correlation to bedside
and histopathological data should be the path to a better
understanding of disease mechanisms and the development of
effective treatments for ALS.
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